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PART FIVE

HOIST SHAFT MINE COMMUNICATIONS
INTRODUCTION

During the summer of 1973 we were asked to perform a theoretical
investigation of the propagation of low frequency (LF) radio waves down
deep (10,000 feet) hoist shafts* for the case where the hoist cable ("rope")
is the only metal conductor present. Propagation is by means of the TEM
coaxial mode of transmission in which the hoist cable serves as the inner
conductor and the surrounding rock acts as the outer conductor.

Since the rock is a relatively poor electrical conductor the current
in the outer conductor of the coaxial line is not confined to a very thin
surface layer as in a metal coaxial cable, but spreads radially to a dis-
tance that is generally many times the shaft diameter. This feature of
the wave propagation requires a more sophisticated theoretical treatment
than the approximate skin-depth theory that is adequate for metal coaxial
lines.

In this Part we treat the hoist shaft wave propagation loss, charac-
teristic impedance, and the field current distributions in the surrounding
rock medium. We also show that the large penetration of the wave into
the rock outer conductor does not present a difficult problem with regard
to coupling the transmitter or receiver to the transmission line with a
minimum of insertion loss, but that the large impedance mismatch caused
by the capacitance termination between the cage and shaft wall may well
be the most significant contribution to overall system loss. Inductive
coupling and impedance matching to the hoist rope/shaft transmission line
are also treated briefly. Preliminary results indicate that a broad min-
imum in overall system loss should occur between 100 kHz and 1 MHz, possibly
centered around 300 kHz. Further work is needed to better quantify this
signal loss behavior, compare it with hoist shaft electromagnetic noise
spectral data recently acquired by NBS, and identify the most favorable

operating frequencies.

*This work complemented the hardware development of a new hoist radio.
system for deep shafts by Collins Radio Co. under Contract H0232056 for
the Bureau of Mines.
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I. THE MODE CONDITION

We approximate the actual rectangular shaft by a cylinder of circular

cross-section of radius b containing a steel cable of radius a along its
axis. The dominant mode of propagation in such a transmission line has

a radially-symmetric transverse magnetic field H, which, for a < r < b

5
has the form

ik,z

Hy = [AJ (kyr) + B Y (ko) e (1) *

where A and B are arbitrary constants and Jl and Y1 are first order

Bessel functions of the first and second kind, respectively. The radial

and longitudinal wave vector components kr and kz satisfy the condition

2
2 _ . 2 _ 4nm
k2 + k2 = k% = N (2)

where A 1is the free space wavelength,

The electric field components are given by the curl components

oH

_ 1 6
Ep = - iwe 0z (3)

o

__ 113

E, = iwegy T OF (rHg) (4)
which, from (1) and the properties of the Bessel functions, give
F = iky A K x -ikzz 5
v " o (3,06 + BT G e (5)
E, = e [AT_(k,r) + BY, (k_r)]e Xz? (6)
z  iweg o ¥t olXr/ 1€

The fields given by (1), (5), and (6) represent an exact solution of

Maxwell's equations.

* References to Figures, Tables, and Equations apply to those in this
Part unless otherwise noted.
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In the conducting rock surrounding the shaft (r > b) the radial part

of the solution must correspond to an outgoing traveling wave. The

solution therefore has the form

Hg = C Hl(z)(kr'r)e-ikzz (7)
ik .

Ep = 7 C 1, 2 (ke 'rye Tke2 (8)
k.' s

B, - = ¢ B () (k_tr)e a2 9)

(2) (2)
where Hl and Ho are the Hankel functions given by
Hl(z) =J, - iy (10)
Ho(z) = J, — 1Y (11)

C 1s an arbitrary constant, ¢ 1s the complex permittivity of the rock,
andk_'1is given by the relation

2 2 _ 2
k 'S+ k,“ = Kk (12)

where K = e/e, 1s the complex dielectric constant of the rock.

At the wall of the shaft the boundary conditions that He and Ez are con-

tinuous give the relations

AT (k) + B Y (kb)) = ¢ By P (k') (13)
k1A JoGep) + B Y (kb)) = Eocw @ g
oA Jolkye Yok B)] = —— CH " (k."b) (14)
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At the inner conductor ( r = a ) the conductivity of the steel is so

high that the boundary condition is simply EZ = 0. Therefore from
(6,

AJ,(k a) + B Yo(kra) =0, (15)

Equations (13), (14), and (15) are homogeneous in A, B and C. The require-
ment for consistency of these equations gives the mode condition

— o
Jl(krb) ) Yl(krb) @
1 Jo(kra) Yo(kra) - Hl (kr'b)

T = 7 (16)

vl Sk v kp |t B P )

Jo(kra) Yo(kra)

C—— —_—

Equations (16), (2) and (12) determine exactly the allowed values of

kr’ kz and k'r for all modes of propagation having a transverse axially-
symmetric magnetic field. We are only interested in the lowest such mode,

which approximates a TEM mode.

IT. PROPAGATION LOSS

For frequencies in the range 20-200 kHz, kra, krb and k'rb are all small
quantities. Therefore the Bessel functions in (16) can be approximated

by the first terms in their series expansions, namely

Jo(x) =1 (17)
X

56 =% (18)
Y_(x) = 2 (log x + 0.577 - log 2) (19)

2
Y, () = - (20)
B P =1- 2L (log x +0.577 - log 2) (21)

(o]

(2) _ 21

H (x) = = (22)
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Equation (16) then reduces to

rik 2 24
k<= —2F—[1 -5 (log k_'b + 0.577 - log 2)] (23)
T r
2K log —
a
The dielectric constant of a conducting medium is given approximately

by the relation

K =-319 (24)
LUE:O

For the case ¢ = 0.01 mho/m and £ = 50 kHz, K = -3597 i. Therefore

from (12), to a very good approximation,
k2 =Kk ? (25)

since kr2 is of the same order as k02 and can therefore be neglected

compared with K koz. On substituting this value of kr'2 into (23), and

then solving (2) for kzz, we find that

k2-x?p-—mi___1 = (log k b/K + 0.577 - log 2) (26)

b
2 log 3 log-;

We take the following values of the constants:

f = 50 kHz

A = 6,000 m
k= 1.047 x 1073 o7t

b = 4 ft. =1.2 m

a = 0.875 in. = 0.0222 m
¢ = 0.01 mho/m

€0 = 8.85 x 10-12 farad/m
K = -3597 i
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Then we find

3

k= 1.358 x 10° — 7.948 x 1071 (a0)

For a 10,000 foot shaft (3050m), the propagation loss is therefore

5

L = (8.686) (7.948 x 10™° m™ 1) (3050m) = 2.11 dB

IIT. SURFACE IMPEDANCE METHOD

An alternative way to calculate the propagation loss is by means
of the surface impedance ZS of the wall of the shaft which is defined

as

E (b)
zZ =-—2 @n
27b He(b)
From (7) and (9) this becomes

. 1 (2) ]
1kr H (kr b)

Z, = (28)
5 (2) '
21bwe Hl (kr b)
With the same approximations as before this becomes
2
ko 2i
= -1 / . - 2

ZS 4w€o (1 . (log kob K + 0.577 - log 2)] (29)

We now insert ZS as a series impedance into the usual transmission

line formula for the propagation constant:

y = Y(R + iwL) (G + iwC) (30)
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| to obtain the formula

\‘ v = /(zS + iwLl) iwC (31)

\ where we assume that the resistance R per unit length of the inner con-

| ductor 1s negligible compared with Zs and that there is no shunt con- \
‘ ductance.

\
\
‘ Since

‘ =k ?, (32)
z
H b
o 2
) L = T log 2’ (33)
27e
C = ” b (34)
g3 \
k 2 o wze T (35)
where u, = 4mx10~7 henry/m. ° oo

Equation (31) becomes \

2rive Z
\ k2?2 ——98 (36)
log

w
o
p|jo'lo

‘This formula becomes identical with Equation (26) when the expression (29)
is substituted for ZS.

Table 1 gives values of Zs calculated by means of Equation (29) for \

frequencies in the range 30-3,000 kHz and conductivities in the range
10—4 to 10_l mho/m. It is of interest that the real part of the surface
impedance RS = wuo/8, is independent of the conductivity and the radius \
of the shaft. The value of ZS for 3,000 kHz and 0.01 mho/m is somewhat
uncertain, since the approximations used are near the limit of their

\Validity for these values,

‘
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The resistance of the stainless steel center conductor of radius
0.0222m and conductivity 106 mho/m is given in Table 2. The results
include the effect of the skin depth of penetration into the cable. It
is seen that the cable resistance i1s small compared with the real part
of the surface impedance given in Table 1 at all frequencies, and there-

fore has little effect on propagation loss.

Table 2

Resistance of Center Conductor for
a= .0222m, ¢ = 106 mho/m

f R
(kHz) (ohm/m)
30 .0025
50 .0032
100 .0045
150 .0055
200 .0064
250 .0071
300 .0078

3000 .0246

Table 3 gives the propagation loss in dB for the same range of
frequency and conductivity, calculated by means of Equation (36) for
a 10,000 foot shaft. It is seen that the loss is very low at 30 kHz
and quite moderate at 300 kHz. However the loss is excessive at 3,000

kHz. It is to be noted that the loss is almost independent of conductivity.

5,9
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Table 3

Propagation Loss, L(dB)
(for b = 1.2m, a = 0.0222m, z = 3050m)

\\\g(mJo/m)

(kéz) 107% 1073 1072 107t
30 1.1 1.1 1.2 1.4
50 1.8 1.9 2.1 2.3

100 | 3.7 4.0 4.3 4.8

150 i 5.6 6.1 6.6 7.3

200 | 7.6 8.1 8.9 9.9

250 | 9.5 10.3 11.2 12.5

300 | 11.5 12.4 13.6 15.0

3000 | 124.1 135.7 151.4 —
I
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IV. CHARACTERISTIC IMPEDANCE

The characteristic impedance of a transmission line is given by the

expression
7 = /R + }wL (37)
o] G + iwC

In the case of the shaft transmission line G = O and R = ZS, which is

the surface impedance given by Equation (29) or Table 1. Then (37)

becomes,
/ZS + iwL
%= Y T (38)

where L and C are given by (33) and (34).

For £ = 100 kHz and ¢ = 10_3 mho/m, we find that Zg = 0.0986 +
0.4402i ohm/m, iwL = (0.501) i ohm/m, iwC = (8.76 x 10_6) i(ohm/m)—l,

and Z, = 327 - 17 i ohms. For ¢ = 1072 mho/m, we get:

Table 4

Characteristic Impedance
(for 0=10"¢ mho/m, b=1.2 m, a=0.0222 m)

£ Zg
(kHz) (ohms)

50 310-181i

300 283-201

For comparison, Z, = 239 ohms for an all-metal transmission line with the

same dimensions.
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V. CURRENT DISTRIBUTION IN THE SURROUNDING MEDIUM

From Equation (7) the magnetic field in the rock is given by

(2) ;o
He(r) _ Hl(z)(kr r) (39)
He(b) H1 (kr'b)
The current density is therefore given by
J (1) . 1 g;{rHe) Ho<2)(kr'r)
- = 2) . (40)
Jz(b) Jz(b) Ho (kr b)

Although k'rr is small compared with 1 at the wall of the shaft, this
is not true for larger values of r where the current demnsity is still
appreciable. Therefore we cannot now use only the first term of the

expansion of the Hankel function. However, since, from (24) and (25),

4
kr has equal real and imaginary parts, we can write

kr'r = xe—Wi/4 (41)

and use the tabulated functions* ker (x) and kei(x) to obtain the

real and imaginary parts of the Hankel function. The relationships are

ker(x) = Re [- E—Z—Ho(z)(xe—ﬂiM)] (42)

kei(o) = Inm [- T2 B P (xe /%) (43)
where

X = [kr'fr (44)

* Handbook of Mathematical Functions, Ed. M. Abramowitz and I.A. Stegun,

National Bureau of Standards, U.S. Department of Commerce, June 1964,
p. 431. :
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from (41) above, so that

Jz(x) = Jreal(x) iJimag(x)

where Jreal(x) « ker(x) and Jimag(x) « kei(x)

(45)

0f particular interest to the coupling of signals to the shaft is

the cumulative distribution of vertical current in the rock as a function

of radial distance, r.

r

Iz(r) =j‘ 2nr Jz(r) dr
b

Therefore we have computed the dimensionless quantity

I(x) = //;2 + 12

real imag

which is proportional to Iz(r), where

_\g\x X Jreal(X) dx

I =
real x J (x)
X5 "0 “real ‘o
X x 7, (x) dx
I - imag
imag
X xo Jreal (Xo)
o
and X, = |kr'|b

5.13
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x J 1 (x) x J. (%
rea ———3———5L?—~}, which are proportional
X X,

The quantities and
%o Jreal (Xb) o real

to the real and imaginary parts of the current flowing in an annulus of
infinitesimal width dx at radius x, are plotted in Figure 1, while the

quantity I(x) is plotted in Figure 2.

In each plot, the dimensionless radius of the shaft wall, X, has
been set equal to 0.1. In view of equation (50), for a shaft radius
b = 4 feet = 1.2 meters, x = 0.1 corresponds to a kr = 0.083 m~Ll. Since
|kr'] = ko /fiiand k = - %%—-this means that for a rock conductivity o =
0.01 mho/m, the corresponding frequency is equal to 87 kHz and K = -20671.

Other combinations of f, 0, and b will produce different values of x,.

VI. COUPLING TO THE TRANSMISSION LINE

The overall communication efficiency between transmitter/receiver
units located on the surface and in the cage will be influenced not only
by the line attenuation loss. It will also depend on the losses caused
by the methods used to establish the return current path in the rock, and
more importantly on the losses due to impedance mismatches and standing
waves. These latter losses will be caused by the high impedance capaci-
tive termination at the cage end of the line, the low resistance sheave
wheel grounding termination on the surface, and the couplers used to

inductively couple signals onto the transmission line via the hoist rope.

A, Spatial Coupling Factors for the Return Paths.

Examination of Figure 2 reveals that the return current is widely
distributed in the rock for typical values of b = 1.2m, o = 0.01 mho/m,
and £ = 87 kHz. At first this would seem to imply that low loss coupling
from the transmitter into the fundamental transmission-line mode requires
a system of return-current electrodes implanted in the ground over a circu-
lar area of diameter equal to about 10-20 hoist-shaft diameters. We will
now show, however, that the loss is actually quite small even when the area
covered by the electrodes is only comparable with the cross-sectional area

of the shaft itself.
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Dimensionless Current Factor

|(X)
|(X )

XJrea

—_
'l
L]

0 rea

o

\ |mag (x)
2 1 / Xo real(x )

FIGURE 1 DIMENSIONLESS CURRENT FACTORS FOR ANNULUS AT RADIUS X
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1(x)

FIGURE 2

DIMENSIONLESS CUMULATIVE CURRENT I{x) VERSUS x
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The argument is that we can divide this coupling problem into two
parts, the first being concerned with current flow from an electrode out
to about one skin-depth, and the second having to do with the transition
from this region, of essentially spherical spreading (or converging) of
the current, to the region of transmission-line propagation beyond one

skin-depth, in which the current flow is mainly in the z-direction.

In the first region the current flow pattern is approximately like
that of direct current from a hemispherical electrode embedded in a semi-
infinite resistive medium, with its flat face flush with the surface of
the medium., The current flow in this case is radial and the total resist-
tance to flow is contributed almost entirely by the volume within a few

hemisphere radii. The spreading resistance is

1
s  2maco
0

s (51)

where a, is the radius of the hemisphere and o is the conductivity of the

rock.

The spreading resistance is not very sensitive to the exact electrode
shape. A shape of interest in the hoist problem, at both the transmitter
and receiver, is that of a hollow cylindrical electrode of length ¢ in
contact with the wall of the shaft. In practice, such an electrode at
the surface end of the shaft will most likely be approximated by three
or more Troof bolts connected in parallel and driven into the wall of the
shaft, equally spaced around its perimeter. At the cage end, the
"electrode" will be a cylindrical capacitance "connection" formed by the
air space between the outer walls of the cage and the walls of the shaft.
At the transmitter, the cylinder will act approximately like the above
mentioned hemisphere having the same area of curved surface as the

cylinder. The equivalent hemispherical radius is then

a = VVhbe, (52)
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where b is the shaft radius. For ¢ = 0.01 mho/m, b = 1.2 m, 2 = 3 m, we
find from (51) and (52) that RS is only 8.4 ohms. This resistance is in
series with the characteristic impedance of the transmission line, which
has a real part of about 300 ohms. Therefore, for ¢ = .0l ohm/m, the
spreading resistance has negligible effect. For o = .00l ohm/m, RS is

84 ohms, and should be allowed for in the design of the driving circuit.

At the receiver the equivalent shpere radius is a, = vb2/2 but the
spreading resistance is now 1/(4waoc). Thus, the spreading resistance is
lowered by a factor of 2. This resistance is in series with the capaci-
tive reactance between the cage and the shaft wall as well as with the

characteristic impedance of the transmission line.

We now turn to the transition from spherical spreading to the trans-
mission line mode of current flow. For simplicity we assume that the

transition occurs sharply at the plane z = §, where § is the skin-depth

. , 1
S = "Fn o (53)
)

For the values f = 87 kHz and o = 0.0l mho/m corresponding to b = 1.2 m

given by the formula

and X, = 0.1, as in Figures 1 and 2, we find that § = 17 m.

In the spherical-spreading region the current density depends on the

spherical radius T, according to the relation

===, (54)

where A is an arbitrary constant. On the plane z = § the z = component

of j is given by
. Ag
Jz(r) = (62 ¥ r2)3/2, (55)

where r is the cylindrical radial coordinate.
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We regard jz(r) as driving the various modes of the transmission line.

The power coupling constant C for the fundamental TEM mode is given by the

jb Jz* i, rdr
) 2 o
, J rer{
b z b

where JZ is the z - component of current density in the transmission line

formula

C =

7 ’ (56)

mode. The numerator is the overlap integral between Jz and jz. The
integrals in the denominator are normalizing factors. It is seen that
when jz has the same r-dependence as Jz, C=1. On the other hand, when

jZ is orthogonal to Jz, Cc=0.

On changing to the dimensionless variable x given by (44) and sub-
stituting from (40) for Jz(r) and from (55) for j, we find approximately
on expressing the result in terms of the ker and kei functions

(Equations 42 and 43);

ker(x) xdx f' kel(x) xdx
(xoa )‘* [ xoa) % %72
4 | — X —_ + X
_ b L o b . . (57)
f [(ker(x))2 + (kEI(X)) xd
x
o

On taking X, = 0.1, § =17 my, and b = 1.2 m, we find by numerical integ-
ration of the integrals in (57) that C = 0.7 = -1.5 dB.

Therefore, the initial spherical spreading of the current, over a
distance of the order of a skin depth (from relatively small electrodes
such as the above mentioned cylindrical electrode approximations for the
surface ground connection and the cage capacitive coupling geometries)
yields a current distribution that matches the fundamental mode shape
quite well, thereby contributing only a very small loss factor. Taken
together with the relatively small spreading resistance effects, the
losses due to spatial coupling factors for the return current path will

not be major contributors to overall system loss at the frequencies of
interest.
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B. Cage Capacitive Termination

First order calculations for the cage-to-shaft-wall capacitance yield
values between 110 and 460 pf. The smaller of these values is the free
space capacitance of a one-meter radius conducting sphere, while the
larger is the capcitance between a 5.5 x 5.5 x 13 foot conducting box
placed in an 8.8 x 8.8 foot conducting enclosure, neglecting fringing
effects. Choosing a nominal capacitance value equal to the geometric
mean, 224 pf, we obtain the following capacitive reactance values over

the frequency range of interest (see Table 5).

Table 5

Capacitive Reactance of Cage Termination
(for C = 224 pf)

£ Xc
(kHz) (Ohms)
10 71,000
30 24,000
50 14,000
100 7,100
300 2,400
500 1,400

At frequencies below about 100 kHz, this reactance in series with
the nominal 300 ohm characteristic impedance of the lines will produce
a large mismatch and standing wave voltage and current variations down
the shaft. It will also produce substantial reductions in the signal
voltages appearing across the transmitter/receiver units, which are
in series with, and of considerably lower impedance than, the capacitive
reactance of the cage at these frequencies. Two potential solutions to
these problems are to raise the impedance levels of the transmitter/
receiver units and to raise the operating frequency. The latter solution
also helps to achieve the former, as will be discussed briefly in the

next section.
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C. Inductive Coupling and Impedance Matching to the Hoist Rope.

Since it is not feasible to place a break in the hoist rope to insert
the surface and cage transmitter/receiver units, the signals must be in-
ductively coupled onto and off the hoist rope/shaft transmission line.

One way to accomplish this is through the use of ferrite or powdered iron
toroidal core coupler/isolators similar to the one described in Chapter II
of Part Six of this Volume, and shown in Figures 1 and 6 of that Chapter.
In Part Six, the toroidal coupler/isolator with its associated capacitor
is placed around the trolley pole drop wire, as shown in Figure 1A of
Chapter II, to add impedance in series with the trolley motors at the
trolley wire carrier phone frequency of 88 or 100 kHz. This is to prevent
the trolley motors from acting as a signal "shorts' across the trolley wire
transmission line. It also provides an alternative method for coupling
the carrier phone to the trolley wire transmission line. The capacitor
and optional resistor shown in these figures are used to tune the toroidal
core isolator and adjust its Q, to obtain the desired impedance level and

isolator selectivity at the frequency of interest.

This type of toroidal coupler/isolator should be applicable to hoist:
rope communication systems, first as a signal coupler and second as an
impedance matching isolator. For example, at the surface end of the hoist
rope it could be used not only to couple the transmitter/receiver units to
the hoist rope-shaft transmission line, but to also add the appropriate
amount of matching impedance in series with the low impedance sheave wheel/
ground connectors, thereby preventing standing wave interference effects
during cage to surface transmissions. At the cage end of the hoist rope,
the role of the toroidal device will most likely be limited only to
transmitter/receiver hoist rope coupling, because of the already large
reactance termination presented by the cage-to-shaft wall capacitance,

as given in Table 5.
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The impedance levels obtainable from reasonably small coupler/isolator
structures can be easily estimated by utilizing the design data established
for the trolley motor isolator described in Chapter II of Part Six. For the
same six pairs of I and U ferrite cores used in the isolator pictured in
Figures 6 and 7 of that Chapter, Figure 7 reveals that for a nominal
minimum air gap* of 0.005", the single-turn inductance will be 19 micro-
henries. The corresponding reactance and resonant impedance levels are
given below in Table 6 of this section for the indicated selectivities.

The 3 kHz bandwidth selectivity chosen for frequencies below 80 kHz is
applicable to single sideband modulation, while the 12 kHz bandwidth
chosen for frequencies above 80 kHz is applicable to narrowband frequency

modulation.

Table 6

Inductive Reactance, Resonant Impedance, and §
for a Small Single-Turn Toroidal Coupler/Isolator

For 3 kHz Bandwidth For 12 kHz Bandwidth

(kHz) ~ (ohms) Zyeg (ohms) _ Q  Zres (ohms) Q
10 1.2 4 3.3 - -
20 2.4 16 6.7 - -
40 4.8 64 13.3 16 3.3
80 9.6 256 26.7 64 6.7

160 19.2 - - 256 13.3
320 38.4 - - 1024 26.7

* A much larger air gap was required for the trolley wire carrier phone
application, to prevent core saturation by the large DC currents flowing
in the trolley wire to power the trolley motors.
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Table 6 indicates that values of impedance comparable to the hoist
rope transmission line characteristic impedance of about 300 ohms are
easily achieved above 100 kHz, even for this small-sized isolator.*
Consequently, larger toroidal coupler/isolators of this type should be
investigated further for their potential application as couplers and

impedance matching devices in hoist shaft communication systems.

VII. CONCLUDING REMARKS

As stated in Chapter VI of this Part, raising the operating frequency
to above 100 kHz offers several advantages for reducing the overall system
loss. For example, examination of Tables 3, 5, and 6 for propagation loss,
cage reactance, and coupler impedance, respectively, reveals that operation
at a frequency in the vicinity of 300 kHz should lead to substantially
reduced overall loss over that obtainable at frequencies below 100 kHz or
at frequencies above 1000 kHz. As the frequency is increased to around
300 kHz, the gain in signal voltage across the transmitter/receiver coup-
ling units due to reduced cage reactance and increased coupler impedance,
more than offsets the effects of increased propagation loss. However,
these minima should be less severe (i.e., have a smaller VSWR) at the
higher frequency of 300 kHz because of the greater difference in relative
strengths of the incident and reflected waves (as a result of the higher
attenuation rate along the transmission line and the smaller mismatches
achievable for the cage and coupler impedances relative to the trans-

mission line characteristic impedance).

* The outside dimensions of this particular isolator are 4-1/2" x 4-1/4"
x 6", the inside dimension 1-1/4" x 2" x 6", making it too small,
especially in cross-section, for use with the 1-3/4" diameter hoist
rope application of interest. The hoist rope application requires a
much larger central opening in the core; not only to accommodate the
large diameter hoist rope, but also the lateral motion of the rope
particularly at the top of the shaft. This need may require the use
of non-standard custom-made cores.,
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In sum, our preliminary findings indicate that an operating frequency
in the vicinity of 300 kHz may offer decided performance advantages over
that obtainable at substantially higher and lower frequencies. These
findings need to be verified and better quantified by conducting a more
comprehensive overall systems analysis and optimization, including the

effects of electromagnetic noise.
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